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used to describe the new local nonrelativistic Maxwellian
distribution for each cell. The entire process is then re-An extension of the beam scheme of Sanders and Prendergast

(Astrophys. J. 188, 489, 1974) for the Newtonian gas dynamics to peated for the next time step. The choice of the size of
relativistic gas dynamics is presented. It is found that the relativistic the time step is dictacted by the Courant–Friedrich–Lewy
Euler equations are split into a set of discrete conservation laws stability condition that physically no beam of gas travelswith beam split conservative state vectors and flux vectors. High-

farther than one cell spacing in one time step. For furtherorder accurate schemes using essentially nonoscillatory concept are
devised. Formulations for two space dimensions are also included. details see [13]. The beam scheme, although it is a particle
Numerical experiments with relativistic one-dimensional shock tube method, however, has all the desirable features of modern
flows and two-dimensional Kelvin–Helmholtz instability flow to il- characteristic-based wave propagating methods, the so-
lustrate the method are given. Q 1997 Academic Press

called upwind shock-capturing methods for hyperbolic
conservation laws. Recently, a new hydrodynamic code
based on the solution of the BGK Boltzmann equation [2]1. INTRODUCTION
has been presented by Prendergast and Xu [11, 20]. In
the method, the Euler and Navier–Stokes solutions areIn recent years relativistic gas dynamics plays an im-
obtained out of the BGK model Boltzmann equation inportant role in areas of astrophysics, high energy particle

beams, high energy nuclear collisions, and free-electron which both the integral solution of the BGK kinetic model
laser technology. The equations that describe the relativis- and the collision constraints are used simultaneously. Only
tic gas dynamics are highly nonlinear and analytical solu- the first-order Taylor expansions for the nonequilibrium
tions to practical problems are difficult to obtain and nu- distribution function and the local Maxwellian have been
merical solutions are usually pursued. Several numerical used although all trajectories of individual particles are
methods for solving relativistic gas dynamics have been followed. Thus their method is of second-order accuracy.
reported [1, 4, 7, 14] and they are mostly developed out Further development and application of their method to
of the existing reliable methods for solving the Euler equa- practical aerodynamic problems has been reported [21].
tions of nonrelativistic or Newtonian gas dynamics. It is The Boltzmann-type Euler scheme of Prendergast and Xu
also noted that almost all the methods are based on macro- [11] is quite different from the beam scheme. In general,
scopic continuum description. the beam scheme is more dissipative than the Euler method

In [13] Sanders and Prendergast presented an interest- of Prendergast and Xu as far as a Riemann solver is con-
ing explicit scheme, which they called the beam scheme, cerned. Another related Euler method based on the kinetic
for solving the equilibrium limit of the nonrelativistic theory is presented in [23, 24] in which the discrete ordinate
Boltzmann equation, namely the the Euler equations of method is used to solve the Euler limit solution of the
Newtonian gas dynamics. In the beam scheme, a presumed Boltzmann equation by replacing the distribution function
nonrelativistic Maxwellian velocity distribution function is by the local Maxwellian. The choice of the discrete ordinate
approximated by several Dirac delta functions or discrete is dictated by the requirement that the distribution function
beams of particles in each cell. These beams are permitted and its moments can be accurately represented. Usually,
to move over a time step transporting mass, momentum, the Gauss–Hermite quadrature and the equally spaced
and energy into adjacent cells. The motion of each beam quadrature are used. However, the number of discrete
is followed to first-order accuracy. The transport is taken ordinate in the velocity space can become unbearable large
into account to determine the new mass, momentum, and in order to accurately represent the distribution function,
energy in each cell; and these macroscopic moments are particularly when the temperature is high. By contrast,

only seven beams are needed in the beam scheme even in
the three space dimensions but the beam scheme is limited1 Author to whom all the correspondence should be addressed. E-mail:

yangjy@spring.iam.ntu.edu.tw. to equilibrium flows only. The three kinetic theory based
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approaches, namely, the beam scheme, the Boltzmann- where pe are the contravariant, and pe are the covariant
components of a four vector. The pe and pe are related bytype Euler/Navier–Stokes solver of Prendergast and Xu

and the discrete ordinate method, seem to give good Euler
solutions for Newtonian gas dynamics. Extension of the pe 5 gen pe, (2.3)
above three methods to relativistic gas dynamics seems
to be feasible. However, the degree of difficulty and the where
complexity involved may vary for each method and the
algebra needs to be worked out becomes more complicated gen 5 gen 5 diag(1, 21, 21, 21) (2.4)
due to the Lorentz factor and the complex function form
of the Jüttner distribution [8] which make the set of relativ- is the metric tensor.
istic equations highly nonlinear and stiff. The local density n(x) and the local particle flow j(x)

In this work, we adopt the concept of the beam scheme are defined by
for Newtonian gas dynamics and directly extend it to rela-
tivistic gas dynamics. Although the thinking is straightfor-

n(x) 5 E d 3pf(x, p), (2.5)ward, however, due to the complex function form of the
relativistic Maxwellian distribution (involving modified
Bessel function), the derivations of the relativistic beam j(x) 5 E d 3puf(x, p), (2.6)
scheme are by no means obvious and some care is needed.
A class of high-order relativistic beam schemes are also

wheregiven. The structure of the paper is organized as follows. In
Section 2 elements of relativistic kinetic theory are briefly

u 5 cp/p0 5 (ux, uy, uz) (2.7)described. The relativistic Maxwellian, related definitions
and conservation laws are given. In Section 3 the first-

is the three-velocity of a relativistic particle with momen-order relativistic beam scheme is constructed. High-order
tum p. The particle four flow, N e(x) 5 (cn(x), j(x)), isnonoscillatory methods are devised in Section 4. Formula-

tions for two space dimensions are derived in Section 5.
Numerical experiments to illustrate the relativistic beam N e(x) 5 c E d 3p

p0 pef(x, p). (2.8)
scheme are given in Section 6. Relativistic flows in one
and two space dimensions are computed. In Section 7 some
concluding remarks are included. The energy-momentum tensor T en(x) is given by

2. ELEMENTS OF RELATIVISTIC KINETIC THEORY
T en(x) 5 c E d 3p

p0 pepnf(x, p). (2.9)
In this section, we give a brief account of relativistic

kientic theory of dilute gas appropriate for present work
The hydrodynamic four-velocity of a medium, U e, is ain content. The works in [3, 9, 16–18] are found to be
time-like vector parallel to the world-line of the particles.useful and should be consulted. Let us consider a simple
It is defined assystem consisting of relativisitc particles of mass m with

momenta p and energies cp0, where p0 5 (p2 1 m2c2)1/2

UeUe(x) 5 c2, Ue 5 (cc, cu), Ue 5 (c, 2cu), (2.10)and c stands for the speed of light. Introduce a function
f(x, p) which gives the distribution of the four-momenta

where c 5 1/Ï1 2 u2/c2 is the Lorentz factor. With thep 5 pe 5 (p0, p) in each space-time point x 5 xe 5 (ct,
help of the hydrodynamic velocity we define a projector,x). The relativistic Boltzmann transport equation which
Den, which projects onto the plane orthogonal to U e. Thedescribes the time evolution of the single particle distribu-
orthogonal projector can be constructed astion function f(x, p), is

pe­e f(x, p) 5 C(x, p), (2.1) Den 5 gen 2
U eU n

c2 . (2.11)

where C(x, p) is the collision integral term representing
changes in f due to particle interactions. The four-momen- The projector is acting on the flow velocity and yields
tum is a time-like vector with normalization (p0)2 2 p2 5 DenUe 5 0. This projector helps one to find the local rest
m2c2, that is, frame which moves together with the matter. The local

rest (LR) frame is the reference frame, where the hydrody-
namic velocity has the componentspepe 5 m2c2, (2.2)
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U e
LR 5 (c, 0, 0, 0). (2.12) where « is the average energy per particle and e is the

energy density in the local rest frame
In this local rest frame one has

e 5 n« 5
1
c
E d 3p

p0 (peUe)2f (0) (2.21)Den
LR 5 DenLR 5 diag(0, 21, 21, 21). (2.13)

To specify the hydrodynamic velocity we choose the defi-
and the equilibrium pressurenition due to Eckart, that is,

p 5 2
1
3

c E d 3p
p0 pepnDen f (0). (2.22)U e 5

cN e

ÏN nNn

(2.14)

and we have no particle flow in the local rest frame in the After inserting f (0) into the above definitions, we obtain
spatial directions

« 5 mc2 K1(mc2/kBT)
K2(mc2/kBT)

1 3kBT, (2.23)N i
LR 5 0, i 5 1, 2, 3. (2.15)

Now we consider the equilibrium limit of the Boltzmann
and we havetransport equation. It is well known that the effect of colli-

sion integral is to drive the gas toward a state of thermody-
p 5 nkBT. (2.24)namic equilibrium specified by a relativistic Maxwellian

(or Jüttner) distribution [8]. To solve the equilibrium limit
This is the equation of state of the relativistic perfect gas ofof the relativistic Boltzmann equation is equivalent to set
classical particles. The conservation equations are obtainedf 5 f (0)(x, p) in Eq. (2.1), for which the collision integral
from the moment integration of Eq. (2.16) and can besatisfies C(x, p) 5 0, automatically. Equation (2.1) now be-
expressed ascomes

­t f (0)(x, p) 1 u ? =x f (0)(x, p) 5 0. (2.16) ­e(rUe) 5 0, (2.25)

­eT en 5 0. (2.26)For equilibrium relativistic gas flow, the distribution func-
tion of the gas is the local relativistic Maxwellian

We first consider relativistic flows in one space dimension.
All macroscopic properties are assumed to be functions off (0)(x, p) 5 n(x)

mc2/kBT
4fm3c3K2(mc2/kBT)

(2.17)
x1 5 x and x0 5 ct and ux 5 v, uy 5 uz 5 0. We also set
the speed of light equal to unity, c ; 1. In one space
dimension we consider that a laboratory frame moves atexp F2

mc2

kBT !1 1 S p
mc2D2G,

a constant speed ux 5 v in the x-direction with respect to
a local rest frame. Any four-vector in the local rest frame,

where m is the mass of the gas particle, T is the gas tempera- Ae
LR, is related to that in the laboratory frame, Ae, through

ture, kB the Boltzmann constant and Kn(z) is the modified the Lorentz transformation
Bessel function of order n,

Kn (z) 5
(z/2)n G(1/2)
G[n 1 1/2]

Ey

1
e2zt(t2 2 1)n21/2 dt. (2.18)

L1 5 3
cv cvv 0 0

cvv cv 0 0

0 0 1 0

0 0 0 1
4, (2.27)

The particle density n and the rest mass density r in equilib-
rium are given by

cv 5
1

Ï1 2 v2
. (2.28)n(x) 5

1
c
E d 3p

p0 peUe f (0), r(x) 5 mn(x). (2.19)

Since U e
LR 5 (c 5 1, 0, 0, 0) and we have U e 5 L1 ue

LR 5The energy-momentum tensor in equilibrium is defined by
(cv, cvv, 0, 0). In the laboratory frame and in one space
dimension, the conservation equations Eq. (2.25) and Eq.T en 5 c E d 3p

p0 pepe f (0) 5
1
c2 (n« 1 p)UeUn 2 pgen, (2.20)

(2.26) give the following relativistic Euler equations:
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­t Q 1 ­x F 5 0, (2.29a) tional form of the Jüttner distribution function f (0) [8], we
first approximate it in a three-dimensional manner by seven
delta functions or discrete beams of particles which repro-
duce the appropriate moments of the distribution function.Q 5 1

R

M

E
2, F 5 1

Rv

Mv 1 p

Ev 1 pv
2 . (2.29b)

Eventually, for one space dimension, it will be reduced to
three beams. In the laboratory frame we first approximate
f (0) in each cell j by

The laboratory frame quantities R, M, and E are related
to the quantities in the local rest frame n (or r) and e and f (0)(p) P qj (p) 5 aj d(p 2 p0) 1 bj d(p 2 px1)
to the fluid velocity v by a set of nonlinear transforms

1 bj d(p 2 px2) 1 bj d(p 2 py1)
(3.1)

R 5 cvr, (2.30) 1 bj d(p 2 py2) 1 bj d(p 2 pz1)

M 5 T 01 5 c2
v(e 1 p)v, (2.31) 1 bj d(p 2 pz2).

E 5 T 00 5 c2
v(e 1 p) 2 p. (2.32)

Such an approximation can be viewed as dividing the parti-
cles in each cell into seven groups. If one observes the flowThe system of relativistic Euler equations can be closed
in the local rest frame of the cell, then one would like toby specifying an equation of state
have one group is at rest and the other six groups of parti-
cles are moving in the 6x, 6y, and 6z, directions, respec-p 5 p(e, r). (2.33)
tively. Naturally, in each cell j, one would like to have the
speed for each of the six groups to be Dv and with sameFor gamma-law gas, we have the equation of state as
weight bj and the one group left would have weight aj.
Consider the one-dimensional problem first, the macro-p 5 (G 2 1)(e 2 r), (2.34)
scopic velocity is (v, 0, 0). The Lorentz transformation
between the rest frame and the lab frame is given by Eq.where G is a constant and 1 , G , Gd.
(2.27). By using this Lorentz transformation we can obtainFor given values of R, M, and E, Eqs. (2.30)–(2.32), with
px6, py6, pz6, and p0 as follows:the help of the equation of state, Eq. (2.33) or Eq. (2.34),

and the definition of cv, Eq. (2.28), provide a set of five
equations for five unknowns n, e, p, v, and cv, which have
to be solved in each cell during a time integration step. In
the next section, we shall derive a numerical method for px6 5 L1 1

cDm

6cDmDv

0

0
2 , py6 5 L1 1

cDm

0

6cDmDv

0
2 ,

(3.2)

solving the relativistic Euler equations, Eq. (2.29), based
on the concept of nonrelativistic beam scheme due to Sand-
ers and Prendergast [13].

3. THE RELATIVISTIC BEAM SCHEME

pz6 5 L1 1
cDm

0

0

6cDmDv
2 , p0 5 L1 1

m

0

0

0
2 ,

In this section the first-order relativistic beam scheme
is derived. We consider the one-dimensional relativistic
flow problems in which the macroscopic quantities are
assumed to be functions of x1 5 x and x0 5 t. Divide the

where cD 5 1/(1 2 Dv2)1/2 and Dv is to be determined later.space into a number of cells of size Dxj 5 xj11 2 xj. Without
Thus, the unknown parameters in each cell j in Eq. (3.1)loss of generality, we assume that the cells are of equal
are aj , bj , and (Dv)j, and they are determined in such asize Dx. The local state of the gas in each cell j at any time
way that the following quantities in the local rest framet is specified by three macrocopic properties, Qj 5 (R(t)j ,
are preserved:M(t)j , E(t)j)T, which are the mass density, momentum den-

sity and the energy density in cell j, respectively. The funda-
mental approximation of beam scheme of Sanders and Rj 5 cvrj 5 E cvrj qj (p)d 3p, (3.3)
Prendergast [13] for nonrelativistic gas dynamics is to re-
place the local nonrelativistic Maxwellian by three delta Mj 5 T 01

j 5 c2
v(ej 1 pj)vj 5 E rj c2

vvj qj (p)d 3p, (3.4)
functions or discrete beams of particles which reproduce
the appropriate moments of the distribution function. Here

Ej 5 T 00
j 5 c2

v(ej 1 pj) 2 pj 5 E c2
vrj qj (p)d 3p. (3.5)in the relativistic gas dynamics, due to the complex func-
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Then we obtain the equations for the determination of the
parameters (aj , bj , Dv) as

aj 1 6bj cDj 5 1, (3.6a) Qs,j 51
ms,j U 0

s,j

ms,j U 0
s,j U 1

s,j

ms,j U 0
s,j U 2

s,j

ms,j U 0
s,j U 3

s,j

ms,j U 0
s,j U 0

s,j

2 , (3.16)

2bj c2
DjDv2 5 pj/rj , (3.6b)

aj 1 6bj c2
Dj 5 ej/rj . (3.6c)

These give where Us,j 5 (U0
s , U1

s , U 2
s , U 3

s ) is the velocity four-vector
of each beam s in the laboratory frame

cDj 5
ej 2 rj

3pj 2 (ej 2 rj)
, (3.7a)

U1 5 (cv, cvv, 0, 0), U2 5 (c1, c1v1, 0, 0),

U3 5 (c2, c2v2, 0, 0),Dv 5 Ïc2
Dj 2 1/cDj , (3.7b)

U4 5 (cvcD, cvcDv, cDDv, 0), U5 5 (cvcD, cvcDv, 2cDDv, 0),
bj 5

(ej/rj 2 1)
6cDj (cDj 2 1)

, (3.7c)
U6 5 (cvcD, cvcDv, 0, cDDv), U7 5 (cvcD, cvcDv, 0, 2cDDv).

aj 5 1 2 6bj cDj . (3.7d) (3.17)

It is noted that we require Now define the x velocity of each beam, Vs,j 5 U1
s,j/U0

s,j ,
(s 5 1, 2, ..., 7) in cell j as

cDj . 1, aj . 0, bj . 0.
V1,j 5 vj 5 V4,j 5 V5,j 5 V6,j 5 V7,j,

(3.18)Define the following quantities: V2,j 5 v1j , V3,j 5 v2j ,

and the mass carried by each beam asv6 5
v 6 Dv
1 6 vDv

, (3.8)

m1,j 5 ajrj Dx, ms,j 5 bjrj Dx (s 5 2, 3, ..., 7). (3.19)
c6 5

1

Ï1 2 v2
6

, c1 1 c2 5 2cv cD. (3.9)
It is noted that o7

s51 Qs,j 5 DxQj . During an interval of
time Dt, these discrete beams will move and transfer mass,

After obtaining the parameters a, b, and Dv, we can deter- momentum, and energy into adjacent cells. The time step
mine the conservative quantities carried by each beam as

Dt, is subjected to the condition that no single beam moves
farther than a cell width Dx during Dt, i.e.,

Rs,j 5 E crj cs,j d(p 2 ps,j)d 3p, (3.10)

Dt #
Dx

max(uVs,j u)
, (3.20)

Mx,s,j 5 E c2rj ux cs,j d(p 2 ps,j)d 3p, (3.11)

which is the Courant–Friedrich–Lewy stability condition.My,s,j 5 E c2rj uy cs,j d(p 2 ps,j)d 3p, (3.12)
During time step Dt beam s (s 5 1, 2, ..., 7) in cell j moves
a distance either into cell j 2 1 or cell j 1 1 or remains inMz,s,j 5 E c2rj uz cs,j d(p 2 ps,j)d 3p, (3.13)
cell j depending on the sign of the beam velocities. Define
the fraction that transfers from cell j to cells k 5 j 6 1 as

Es,j 5 E c2rj cs,j d(p 2 ps,j)d 3p, (3.14)

as,j,j61 5 6
1
2

(Vs,j 6 uVs,ju)
Dt
Dx

5 6V 6
s,j l,

(3.21a), (3.21b)
where ps,j denote p0,j , px6,j , py6,j and pz6,j , respectively, and

l 5
Dt
Dx

,
cs,j 5 Haj , s 5 1,

bj , s 5 2, 3, ..., 7.
(3.15)

and the fraction that remains in cell j is
In the laboratory frame, the contribution of each s beam

as,j,j 5 1 2 uVs,jul. (3.21c)to the conservative state vector Q in cell j is
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After time step Dt, the new values of mass, momentum, s 5 1, 2, 3. The above integration scheme, Eq. (3.24), can
also be cast into the form of a conservative scheme inand energy in each cell, (Qn11

j ), taking into account transfer
of these quantities from adjacent cells are given by terms of numerical fluxes

Qn11
j 5

1
Dx O

7

s51
Oj11

k5j21
an

s,k,j Qn
s,k , (3.22)

Qn11
j 5

1
Dx O

3

s51
Qn11

s ,

(3.28)
where

Qn11
s 5 Qn

s,j 2
Dt
Dx

(F̃ SP
s,j11/2 2 F̃ SP

s,j21/2),

where the numerical flux for each beam, F̃ SP
s,j11/2 , is de-

Qn11
j 5 1

cv,j rj

c2
v,j (ej 1 pj)vj

0
0

c2
v,j (ej 1 pj) 2 pj

2 . (3.23) fined as

F̃ SP
s,j11/2 5

1
2

(F n
s,j 1 F n

s,j11 2 FSP
s,j11/2), (3.29)

The integration scheme, Eq. (3.22), can be expressed as
FSP

s,j11/2 5 uVs,j11uQs,j11 2 uVs,juQs,j . (3.30)

Qn11
j 5

1
Dx O

7

s51
[as,j21,j Qn

s,j21 1 as,j,j Qn
s,j

This completes the description of the first-order relativistic
beam scheme.1 as,j11,j Qn

s,j11]
(3.24) The scheme defined by Eqs. (3.28)–(3.30) can be consid-

ered as a conservative upwind scheme for the following5
1

Dx O
7

s51
[V1

s,j21 Qs,j21 l 1 (1 2 uV n
s,jul)Qs,j

discrete set of conservation laws

1 V 2
s,j11 Qs,j11l].

­t Qs 1 ­x Fs (Qs) 5 0, s 5 1, 2, 3, (3.31)
For problems in one space dimension, the seven beams
can be merged into three beams at this stage. Since V1,j 5

withV4,j 5 V5,j 5 V6,j 5 V7,j 5 vj , we can combine these beams
together and form a new single beam

Q̃1,j 5 Q1,j 1 Q4,j 1 Q5,j 1 Q6,j 1 Q7,j . (3.25a)
Q1 5 1

b(a 1 4bcD)

bcvv(a 1 4bc2
D)

bcv(a 1 4bc2
D)
2 , Q2 5 1

b1

b1c1v1

b1c1

2 ,

The other two beams are kept unchanged

Q̃2,j 5 Q2,j , (3.25b)

Q3 5 1
b2

b2c2v2

b2c2

2 , (3.32)Q̃3,j 5 Q3,j . (3.25c)

The corresponding new three beam velocities Ṽs at cell
j are

and

Ṽ1,j 5 vj, Ṽ2,j 5 v1,j, Ṽ3,j 5 v2,j . (3.26)

We then have the beam flux vectors for the three new
F1 5 1

bv(a 1 4bcD)

bcvv2(a 1 4bc2
D)

bcvv(a 1 4bc2
D)
2 , F2 5 1

b1v1

b1c1v2
1

b1c1v1

2 ,beams

F̃s,j 5 Ṽs,j Q̃s,j , s 5 1, 2, 3. (3.27)

From here on, without causing any confusion we shall omit F3 5 1
b2v2

b2c2v2
2

b2c2v2

2 , (3.33)
the tilde signs in the equations to be described below. We
also reset the number of beams from seven to three, i.e.,
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where b 5 rcv, b1 5 brc1, and b2 5 brc2 . We note that The components of FENO
s,j11/2 are defined by

the beam scheme not only splits the state vector but also
the flux vectors. It has some entropy-satisfying mechanism flENO

s,j11/2 5 uc l
s,j11/2 1 gc̃l

s,j11/2ubl
s,j11/2

embedded as compared with approximate relativistic Rie-
2 c(as,j11/2)(es,j 1 es,j11)mann solver [4, 14] based on Roe method [12]. Numerical

test using first-order beam scheme and Roe-type scheme
2 gc̃(as,j11/2)(ds,j 1 ds,j11), (4.2)will be given below to illustrate this point.

After obtaining the new values of the macroscopic gas
variables in the laboratory frame Qn11

j 5 (Rj , Mj , Ej)n11

al
s,j11/2 5 al(Qn

s,j , Qn
s,j11) 5 5

F l
s,j11 2 F l

s,j

bl
s,j11/2

, if Ql
s,j ? Ql

s,j11 ,

Vs,j , if Ql
s,j 5 Ql

s,j11;
for each cell from Eq. (3.28), we need to calculate the local
rest frame quantities rj , ej , pj , and vj at time level (n 1 1)Dt.
The laboratory quantities R (mass density), M (momentum
density), and E (energy density) are related to quantities (4.3)
in the local rest frame e (energy density) and r (particle

el
s,j 5 m̃[bl

s,j11/2 2 um(D2bl
s,j11/2, D1bl

s,j11/2),density), and to the fluid velocity v by the set of nonlinear
transformations, Eqs. (2.30)–(2.32). From Eqs. (2.30)– bl

s,j21/2 1 um(D2bl
s,j21/2, D1bl

s,j21/2)]; (4.4)
(2.32) we have the equation for finding r,

d l
s,j 5 Hm(D2bl

s,j21/2, D1bl
s,j21/2), if ubl

s,j21/2u # ubl
s,j11/2u,

m(D2bl
s,j11/2, D1bl

s,j11/2), if ubl
s,j21/2u . ubl

s,j11/2u;h(r) 5 R1 S1 2
M 2

(E 1 p(r))2D2 r2 5 0, (3.34)

(4.5)where

p 5 p(e, r) 5 p(E 2 ÏM 2(1 2 r2/R2), r) 5 p(r). (3.35) c l
s,j11/2 5 Hc(al

s,j11/2)(el
s,j11 2 el

s,j)/bl
s,j11/2 , if bl

s,j11/2 ? 0,

0, if otherwise,
A Newton–Raphson procedure can be applied to solve

(4.6)for r. Once the value of r has been obtained, the energy
density, pressure, and velocity are obtained via

e 5 E 2 ÏM 2(1 2 r2/R2), (3.36a)
c̃ l

s,j11/2 5 Hc̃(al
s,j11/2)(d l

s,j11 2 d l
s,j)/bl

s,j11/2 , if bl
s,j11/2 ? 0,

0, if otherwise,p 5 p(e, r), (3.36b)

(4.7)v 5
M

E 1 p(e, r)
. (3.36c)

where c and c̃ functions are defined by
After the decoding and obtaining the local rest frame quan-
tities, one then specifies that the local relativistic Maxwel-

c(z) 5 (uzu 2 lz2)/2, (4.8)lian distribution with parameters determined by the new
values of the gas variables and repeats the entire proce-

c̃(z) 5 H(2uzu 2 3luzu2 1 l2uzu3)/6, if ubl
s,j21/2u # ubl

s,j11/2u,

(l2uzu3 2 uzu)/6, if ubl
s,j21/2u . ubl

s,j11/2u.
dures to advance the solution in time.

4. HIGH-ORDER RELATIVISTIC BEAM SCHEMES
(4.9)

The above scheme is only of first-order accuracy and it
The m̃ and m functions are given byis more desirable to have at least second-order accuracy

in practical applications. To extend the first-order beam
scheme to higher-order accuracy we follow the same ap-

m̃(y, z) 5 Hs ? min(uyu, uzu), if sgn y 5 sgn z 5 x,

0, if otherwise. (4.10)
proach developed in [22, 23] in which the essentially non-
oscillatory (ENO) piecewise polynomial reconstruction
schemes of Harten et al. [6] were adopted and extended
to the Euler equations of Newtonian gas dynamics. Define m̃(y, z) 5 Hy, if uyu # uzu,

z, if uyu . uzu. (4.11)bl
s,j11/2 as components of Qs,j11 2 Qs,j . A class of high-

order accurate schemes can be expressed in the same form
The class of schemes defined by Eqs. (4.2)–(4.11) includesas Eq. (3.29) with the numerical flux defined by
the second-order total variation diminishing (TVD) [5]

F̃ ENO
s,j11/2 5 As(F n

s,j 1 F n
s,j11 2 FSP

s,j11 2 FENO
s,j11/2). (4.1) scheme (g 5 0, u 5 0), denoted as TVD2; the second-
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FIG. 1. Relativistic shock tube solution (Example 1), using first-order and high-order beam schemes: (a) velocity; (b) pressure; (c) density; (d)
internal energy.

order ENO scheme (g 5 0, u 5 1/2), denoted as ENO2; where cu is the Lorentz factor
and the third-order UNO scheme (g 5 1, u 5 0), denoted
as ENO3 [6, 22]. The details and definitions of the expres- cu 5

1

Ï1 2 u2
, u2 5 u2

x 1 u2
y . (5.2)

sions can be found in [22, 23].

5. FORMULATION IN TWO SPACE DIMENSIONS Since Ue
LR 5 (c 5 1, 0, 0, 0) and we have Ue 5 L2U

e
LR 5

(cu, cuux, cuuy, 0). In the laboratory frame and in two space
In this section we consider relativistic beam scheme in dimensions, the conservation equations give the following

two space dimensions. All macroscopic properties are as- relativistic Euler equations:
sumed to be functions of x1 5 x, x2 5 y, and x0 5 t and
u1 5 ux, u2 5 uy, u3 5 0. The Lorentz transformation is ­t Q 1 ­x F 1 ­y G 5 0, (5.3)

L2 5 3
cu cuux cuuy 0

cuux (cuu2
x 1 u2

y)/u2 (cu 2 1)uxuy/u2 0

cuuy (cu 2 1)uxuy/u2 (u2
x 1 cuu2

y)/u2 0

0 0 0 1
4 , Q 5 1

R

M

N

E
2 , F 5 1

Rux

Mux 1 p

Nux

Eux 1 pux

2 , G 5 1
Ruy

Muy

Nuy 1 p

Euy 1 puy

2 .

(5.4)(5.1)
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FIG. 2. Relativistic shock tube solution (Example 2), using first-order and high-order beam schemes: (a) velocity; (b) pressure; (c) density;
(d) energy.

The laboratory frame quantities R, M, N, and E are related tum densities and the energy density, respectively. Using
Eq. (3.1), we approximate the Jüttner distribution functionto the quantities in the local rest frame n (or r) and e and to

the fluid velocities ux and uy by a set of nonlinear transforms f (0) by seven delta functions or discrete beams of particles
which reproduce the appropriate moments of the distribu-
tion function. Eventually, for two space dimensions, it canR 5 cur, (5.5)
be merged into five beams. In the laboratory frame we

M 5 T 01 5 c2
u(e 1 p)ux , (5.6)

first approximate f (0) in each cell (i, j) by
N 5 T 02 5 c2

u(e 1 p)uy , (5.7)

f (0) P qi,j (p) 5 ai,j d(p 2 p0) 1 bi,jd(p 2 px1)E 5 T 00 5 c2
u(e 1 p) 2 p. (5.8)

1 bi,j d(p 2 px2) (5.9)
The system of relativistic Euler equations can be closed

1 bi,jd(p 2 py1) 1 bi,j d(p 2 py2)by specifying an equation of state, such as Eq. (2.33).
Next the first-order relativistic beam scheme in two space

1 bi,jd(p 2 pz1) 1 bi,j d(p 2 pz2),
dimensions is derived. Divide the space into a number of
cells of area DAi,j . Without loss of generality, we assume
uniform rectangular cells with Dx 5 Dy and DAi,j 5 DxDy. where p0, px6, etc. are the same as those defined by Eq.

(3.2) and the parameters of qi,j(p) are (ai,j , bi,j , (Dv)i,j) inThe local state of the gas in each cell (i, j) at any time t is
specified by four macrocopic properties, Qi,j 5 (R(t), M(t), cell (i, j) and they are determined in such a way that the

following quantities in the local rest frame are preserved:N(t), E(t))T
i,j , which are the mass density, x- and y-momen-
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Ri,j 5 (cu)i,jri,j 5 E ri,j cuqi,j (p)d 3p, (5.10)

Ei,j 5 T 00
i,j 5 E c2

uri,j qi,j (p)d 3p, (5.11)

(Mx)i,j 5 T 01
i,j 5 E c2

uri,j ux qi,j (p)d 3p. (5.12)

(My)i,j 5 T 02
i,j 5 E c2

uri,j uy qi,j (p)d 3p, (5.13)

(Mz)i,j 5 T 03
i,j 5 E c2

uri,j uz qi,j (p)d 3p 5 0. (5.14)

Then we obtain the equations for the determination of the
parameters (ai,j , bi,j , Dv), which turn out to be identical to
Eq. (3.6) and the solutions are given by Eq. (3.7).

Denote any four-vector UsLR 5 (Us0, Us1, Us2, Us3)LR

in the local rest frame and let

U1LR 5 (1, 0, 0, 0), U2LR 5 (cD, cDDv, 0, 0)LR,

U3LR 5 (cD, 2cDDv, 0, 0)LR, (5.15)

U4LR 5 (cD, 0, cDDv, 0)LR, U5LR 5 (cD, 0, 2cDDv, 0)LR,

U6LR 5 (cD, 0, 0, cDDv)LR, U7LR 5 (cD, 0, 0, 2cDDv)LR.

Then the corresponding four-velocity vectors Us in the
laboratory frame are given by

Us 5 (Us0, Us1, Us2, Us3) 5 L2UsLR . (5.16)

Now define the beam velocities

Vs 5 (Vsx , Vsy , Vsz) 5 (Us1, Us2, Us3)/Us0
(5.17)

(s 5 1, 2, ..., 7)

in each cell and the mass carried by each beam as FIG. 3. Relativistic shock tube solution (Example 2). A comparison
of first-order methods: (a) beam scheme; (b) Roe-type scheme without
entropy fix.m1(i,j) 5 a(i,j)ri,j DAi,j , ms,i,j 5 bi,jri,j DAi,j

(5.18)
(s 5 2, 3, ..., 7).

mass, momentum, and energy into adjacent cells. The timeIn the laboratory frame, the contribution of each s beam
step Dt is subjected to the condition that no single beamto the conservative state vector Q in cell (i, j) is
moves farther than a cell size DAi,j during Dt, i.e.,

Dt # min S Dx
uVsxu

,
Dy

uVsyu
D (5.20)

Qs,i,j 51
ms,i,j Us0,i,j

ms,i,j Us0,i,j Us1,i,j

ms,i,j Us0,i,j Us2,i,j

ms,i,j Us0,i,j Us3,ij

ms,i,j Us0,i,j Us0,i,j

2 , (5.19)

which is the Courant–Friedrich–Lewy stability condition.
During time step Dt beam s (s 5 1, 2, ..., 7) in cell (i, j)
moves a distance either into cell (i 2 1, j), (i 1 1, j), (i,
j 2 1), or cell (i, j 1 1) or remains in cell (i, j) depending
on the sign of the beam velocities. Define the fraction thatIt is noted that o7

s51 Qs,i,j 5 DAi,j Qi,j . During an interval
of time Dt, these discrete beams will move and transfer transfers from cell (i, j) to cells (k 5 i 6 1, j) as
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FIG. 5. Two interacting relativistic blast waves (Example 3) usingFIG. 4. Two interacting relativistic blast waves (Example 3) using
ENO2; 400 points, t 5 0.85 (solid lines are the numerical solution ofTVD2; 400 points, t 5 0.85 (solid lines are the numerical solution of
ENO3, 1600 points): (a) density; (b) velocity; (c) pressure.ENO3, 1600 points): (a) density; (b) velocity; (c) pressure.

and the fraction that remains in cell (i, j) asai61, j
s,i,j 5 6

1
2

(Vsx,i,j 6 uVsx,i,ju)
Dt
Dx

5 6V 6
sx,i,j

Dt
Dx

, (5.21)

the fraction from cell (i, j) to cells (i, j 6 1) as as,i,j 5 1 2 SuVsx,i,ju
Dt
Dx

1 uVsy,i,ju
Dt
DyD . (5.23)

ai,j61
s,i,j 5 6

1
2

(Vsy,i,j 6 uVsy,i,ju)
Dt
Dy

5 V 6
sy,i,j

Dt
Dy

, (5.22)
After time step Dt, the new values of mass, momentum,
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and energy in each cell, (Qn11
i,j ), taking into account transfer

of these quantities from adjacent cells are given by

Qn11
i,j 5

1
DAi,j

O7
s51
Fai,j

s,i,j Qn
s,i,j 1 Oi11

k5i21
k?i

ai,j
s,k,j Qn

s,k,j 1 Oj11

l5j21
l?j

ai,j
s,i,l Qn

s,i,lG ,

(5.24)

FIG. 7. Distribution of Lorentz factor in two interacting relativistic
blast waves; ENO3, 400 points, t 5 0.85.

where

Qn11
i,j 51

cui,jri,j

c2
ui,j (ei, j 1 pi,j)uxi,j

c2
ui,j (ei,j 1 pi,j)uyi,j

0

c2
ui,j (ei, j 1 pi,j) 2 pi,j

2
n11

.

For problems in two space dimensions, the seven beams
can be merged into five beams at this stage. Since V1,i,j 5
V6,i,j 5 V7,i,j , we can combine these beams together and
form a new single beam

Q̃1,i,j 5 Q1,i,j 1 Q6,i,j 1 Q7,i,j . (5.25a)

The other four beams are kept unchanged

Q̃2,i,j 5 Q2,i,j , Q̃3,i,j 5 Q3,i,j , (5.25b)
Q̃4,i,j 5 Q4,i,j , Q̃5,i,j 5 Q5,i,j .

Without causing any confusion we shall omit the super-
script tilde in the equations to be described below and
reset the number of the beams from seven to five, i.e.,
s 5 1, 2, 3, 4, 5. Then we have

Qs 51 51
rcu(a 1 2bcD)

rc2
uux(a 1 2bc2

D)

rc2
uuy(a 1 2bc2

D)

rc2
u(a 1 2bc2

D)
2 ,

FIG. 6. Same as in Fig. 5 using ENO3.
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Qs52 5 1
brcucD(1 1 uxDv)

brcucD(1 1 uxDv)[cucDux 1 (cuu2
x 1 u2

y)cDDv/u2]

brcucD(1 1 uxDv)[cucDuy 1 (cu 2 1)uxuycDDv/u2]

brc2
uc2

D(1 1 uxDv)2

2 ,

Qs53 5 1
brcucD(1 2 uxDv)

brcucD(1 2 uxDv)[cucDux 2 (cuu2
x 1 u2

y)cDDv/u2]

brcucD(1 2 uxDv)[cucDuy 2 (cu 2 1)uxuycDDv/u2]

brc2
uc2

D(1 2 uxDv)2

2 ,

Qs54 5 1
brcucD(1 1 uyDv)

brcucD(1 1 uyDv)[cucDux 1 (cu 2 1)uxuycDDv/u2]

brcucD(1 1 uyDv)[cucDuy 1 (u2
x 1 cuu2

y)cDDv/u2]

brc2
uc2

D(1 1 uyDv)2

2 ,

Qs55 5 1
brcucD(1 2 uyDv)

brcucD(1 2 uyDv)[cucDux 2 (cu 2 1)uxuycDDv/u2]

brcucD(1 2 uyDv)[cucDuy 2 (u2
x 1 cuu2

y)cDDv/u2]

brc2
uc2

D(1 2 uyDv)2

2 .

(5.26)

The beam velocities in the x-direction in the cell (i, j) are

V x
1 5 ux

FIG. 8. Perturbed relativistic shock tube problem (Example 4) using
V x

2 5
cucDux 1 (cuu2

x 1 u2
y)cDDv/u2

cucD(1 1 uxDv)
, beam schemes; 200 points.

Ṽ x
3 5

cucDux 2 (cuu2
x 1 u2

y)cDDv/u2

cucD(1 2 uxDv)
,

(5.28) The beam fluxes Fs and Gs in the x- and y-direction are
given byV x

4 5
cucDux 1 (cu 2 1)uxuycDDv/u2

cucD(1 1 uyDv)
,

Fs 5 V x
s Qs , Gs 5 V y

s Qs , s 5 1, 2, ..., 5. (5.30)Ṽ x
5 5

cucDux 2 (cu 2 1)uxuycDDv/u2

cucD(1 2 uyDv)
,

and the beam velocities in the y-direction in the cell (i, j) are The integration scheme defined by Eq. (5.24) can also be
cast into the form of a conservative scheme in terms of

V y
1 5 uy , numerical fluxes

V y
2 5

cucDuy 1 (cu 2 1)uxuycDDv/u2

cucD(1 1 uxDv)
,

Qn11
i,j 5

1
DAi,j

O5
s51
FQn

s,i,j 2
Dt
Dx

(F̃ SP
s,i11/2,j 2 F̃ SP

s,i21/2,j)

(5.31)V y
3 5

cucDuy 2 (cu 2 1)uxuycDDv/u2

cucD(1 2 uxDv)
,

(5.29)
2

Dt
Dy

(G̃ SP
s,i,j11/2 2 G̃ SP

s,i,j21/2)G,
V y

4 5
cucDuy 1 (u2

x 1 cuu2
y)cDDv/u2

cucD(1 1 uyDv)
,

where the numerical flux in the x-direction, F̃ SP
s,i11/2,j , isV y

5 5
cucDuy 2 (u2

x 1 cuu2
y)cDDv/u2

cucD(1 2 uyDv)
.

defined as
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FIG. 9. Relativistic Kelvin–Helmholtz instability for air–air case on a 64 3 128 grid: (a) contours of the passive function f at values 2dsA , 0, dsA ;
(b) vorticity contours.

­t Qs 1 ­x Fs(Qs) 1 ­yGs (Qs) 5 0, s 5 1, 2, ..., 5, (5.34)F̃ SP
s,i11/2,j 5 As(F n

s,i,j 1 F n
s,i11,j 2 FSP

s,i11/2,j), (5.32)

FSP
s,i11/2,j 5 uV x

s,i11,juQs,i11,j 2 uV x
s,i,juQs,i,j . (5.33)

where Qs , Fs , and Gs are given above.
This completes the description of the first-order relativis-

tic beam scheme in two space dimensions.Similar expression can be defined for the numerical flux
To advance the solution, the scheme defined by Eq.in the y-direction.

(5.31) is integrated using Strang-type dimensional splitting:The scheme defined by Eq. (5.31) can be considered as
a conservative upwind scheme for the following discrete

Qn12
s,i,j 5 Lx (Dt)Ly(Dt)Ly(Dt)Lx(Dt)Qn

s,i,j . (5.35)set of conservation laws
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FIGURE 9—Continued

The one-dimensional operators Lx and Ly are defined by After obtaining the new values of the macroscopic gas
variables in the laboratory frame Qn11

i,j 5 (R, M, N, E)i,j ,
for each cell, we need to calculate the local rest frame

Qn11
s,i,j 5 Lx(Dt)Qn

s,i,j quantities r, e, p, ux, and uy at time level (n 1 1)Dt. The
laboratory quantities R (mass density), M, N (momentum
density), and E (energy density) are related to quantities5 Qn

s,i,j 2
Dt
Dx

(F̃ ENO
s,i11/2,j 2 F̃ ENO

s,i21/2,j), (5.36)
in the local rest frame e (energy density) and r (particle
density), and to the fluid velocity (ux, uy) by the set ofQn11

s,i,j 5 Ly(Dt)Qn
s,i,j

nonlinear transformations, Eqs. (5.5)–(5.8). The decoding
procedure is similar to that described for one-dimensional

5 Qn
s,i,j 2

Dt
Dy

(G̃ ENO
s,i,j11/2 2 G̃ ENO

s,i,j21/2). (5.37)
case and will not be repeated here.
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FIGURE 9—Continued

After the decoding and obtaining the local rest frame merical methods to relativistic Riemann problems in one
space dimension which admit an analytical solution [1,quantities, one then specifies that the local relativistic

Maxwellian distribution with parameters determined by 4, 7, 14]. Relativistic flows in two space dimension are
also included.the new values of the gas variables and repeats the entire

procedures to advance the solution in time.
EXAMPLE 1 (Relativistic shock tube flow). We consider

gas flows in a shock tube at relativistic velocities. In this6. NUMERICAL EXPERIMENTS AND DISCUSSIONS
problem a diaphragm, which is located at x 5 0.5, separates
two regions, each in a constant equilibrium state at t 5 0.In this section we report some numerical experiments to

illustrate the performance of the present relativistic beam The initial conditions are specified as (rL, vL, pL, eL) 5
(1, 0, 1, 3.5) for 0 # x # 0.5 and (rR, vR, pR, eR) 5 (0.125,schemes. For validation and comparison we apply the nu-
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FIGURE 9—Continued

0, 0.1, 0.375) for 0.5 , x # 1. This is a mildly relativistic (solid lines). The exact solution of the relativistic Riemann
shock tube problems is obtained using the method de-case and the wave structures are quite similar to the nonrel-

ativistic case, namely shock wave, contact surface, and rar- scribed in [7]. The effect of high-order schemes TVD2,
ENO2, and ENO3 can be seen through the more accurateefaction fan. The gamma law gas with G 5 1.4 was consid-

ered. We used 100 grid cells with Dx 5 0.01 and the CFL representation of expansion fan and crisper shock and con-
tact profiles.number was 0.8. The results at time t 5 0.48 are ploted. The

computed velocity, pressure, density, and energy profiles
(circles) using the first-order upwind scheme (the original EXAMPLE 2 (Relativistic shock tube flow with shock heat-

ing). This case includes shock heating of a cold fluid. Thebeam scheme), the second-order TVD2, the second-order
ENO2, and the third-order ENO3 schemes are shown, initial conditions are (rL, vL, pL, eL) 5 (10, 0, 40/3, 130/3)

for 0 # x # 0.5 and (rR, vR, pR, eR) 5 (1., 0, 2/3 3 1026,respectively, in Fig. 1, together with the exact solutions
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FIG. 10. Relativistic Kelvin–Helmholtz instability for air–air case on a 128 3 256 grid. (a) contours of passive function f at values 2dsA , 0, dsA ;
(b) vorticity contours.

1) for 0.5 # x # 1. The fluid velocity now slightly exceeds fan which reaches supersonic velocities and a sonic transi-
tion occurs. The computed Mach number profiles obtained0.7 and the relativistic effects are more pronounced than

the previous case. We used 100 grid points with Dx 5 0.01 by using the first-order beam scheme and the Roe-type
approximate relativistic Riemann solver [4] with 200 gridand G 5 1.4. The results of velocity, pressure, density, and

energy profiles at time t 5 0.48 are shown in Fig. 2 for the points are shown in Fig. 3. We observe that the Roe-type
scheme gives an expansion shock when no entropy fixfirst-order, second-order TVD2, second-order ENO2, and

third-order ENO3 beam schemes, respectively. Again, the is applied.
ability of the present methods to capture discontinuities is
well confirmed and the effect of high-order methods is EXAMPLE 3 (Two interacting relativistic blast waves).

We consider here the interaction of two relativistic blastclearly demonstrated. This example contains an expansion
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FIGURE 10—Continued

waves in which we follow the nonrelativistic case as first G 5 1.4. The results at the final time t 5 0.85 are shown
in Figs. 4 to 6 for the TVD2, ENO2, and ENO3 schemes,considered by Woodward and Collela [19]. The initial

conditions are (rL, vL, pL) 5 (1., 0., 103) for 0 , x , respectively. The symbols (circles) are the computed data
and the solid lines are the numerical solutions obtained0.1, (rM, vM, pM) 5 (1., 0., 1022) for 0.1 , x , 0.9, and

(rR, vR, pR) 5 (1., 0., 102) for 0.9 , x , 1. The reflective using ENO3 with 1600 points. Notice that all three
schemes have essentially converged for the velocity, butboundary condition is applied at both x 5 0 and x 5

1.0. See [19] for a detailed discussion of this problem not for the pressure and the density. The density profiles
indicate the severe smearing of contact discontinuities.in a nonrelativistic gas. Here, in the relativistic flow, the

flow structures are quite different. We run this case with However, the quality of resolution of the schemes are
in the order of ENO3, ENO2, and TVD2. A plot of400 grid points and CFL 5 0.9 for a gamma-law gas
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FIGURE 10—Continued

the Lorentz factor using the ENO3 with 400 points is solutions are plotted at time t 5 0.48. The results using
TVD2, ENO2, and ENO3 are shown in Fig. 8. The solidshown in Fig. 7.
lines, which are considered as exact solutions, are obtained

EXAMPLE 4 (Perturbed relativistic shock tube flow).
using the ENO3 scheme with 2000 points. Slightly better

This example is considered by Shu and Osher [15]. The
resolution capability of the ENO3, as compared with that

initial conditions are (rL, vL, pL, eL) 5 (1.0, 0., 1.0, 3.5)
of ENO2, can be detected in the region where the shock

for 0 # x # 0.5 and (rR, vR, pR, eR) 5 (rR, 0.0, 0.1, eR) for
wave is passing through and interacting with the fluctuating

0.5 , x # 1. Here the right state is a perturbed density
density field.

field of sinusoidal wave, rR 5 0.125 2 0.0875 sin(50(x 2
0.5)), and eR 5 pR/(G 2 1) 1 rR. We run this test on meshes EXAMPLE 5 (Relativistic Kelvin–Helmholtz instability).

Next, we consider problems in two space dimensions andwith 200 points and CFL 5 0.8 for G 5 1.4. The computed



KINETIC BEAM SCHEME 39

FIGURE 10—Continued

perform two-dimensional calculations of the relativistic below the interface are (rT, uxT, uyT, pT) 5 (1., u0, 0., 1.0)
and (rB, uxB, uyB, pB) 5 (1., 2u0, 0., 1). Above the interface,Kelvin–Helmholtz instability flows. For this problem we

follow the work of Mulder, Osher, and Sethian [10] for the fluid moves towards the left with speed uxT 5 u0, and
below the interface, the fluid moves towards the right withcomputing the propagating interface in nonrelativistic gas

dynamics. The Kelvin–Helmholtz instability occurs when speed uxB 5 2u0. We assume an air–air case and set the
density equal to 1 everywhere. We have periodic bound-one fluid is moving at a different speed relative to another.

Consider one fluid atop another; in between there is an aries in the horizontal direction. The level set equation for
a propagating interface is coupled to the set of conservationinterface and fluids are moving at different speeds initially

parallel to the horizontal direction. As time goes on, the laws, Eq. (5.34), as
initial interface will roll up into a vortical structure, which
serves to entrap the fluid. The initial conditions above and ­t (Rf) 1 ­x (Rux f) 1 ­y (Ruyf)y 5 0,
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where the function f(x, y, t) contains the embedded motion REFERENCES
of propagating interface as the level set f 5 0. The evolu-

1. D. S. Balsara, Riemann solver for relativistic hydrodynamics, J.tion equation for f is solved by using the same nonoscilla-
Comput. Phys. 114, 284 (1994).

tory scheme used to solve the relativistic Euler equations.
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8. F. Jüttner, Ann. Phys. Chem. 34, 856 (1911).7. CONCLUDING REMARKS
9. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,

Elmsford, NY, 1987).In this work, the first-order beam scheme of Sanders
10. W. Mulder, S. Osher, and J. A. Sethian, Computing interface motionand Prendergast for nonrelativistic gas dynamics has been

in compressible gas dynamics, J. Comput. Phys. 100, 209 (1992).successfully extended to the relativistic gas dynamics. The
11. K. H. Prendergast and K. Xu, J. Comput. Phys. 109, 53 (1993).resulting beam scheme provides an intrinsic entropy-satis-
12. P. L. Roe, J. Comput. Phys. 43, 357 (1981).fying mechanism and prevents the expansion shock from
13. R. H. Sanders and K. H. Prendergast, The possible relation of theoccurring. The beam scheme also splits the relativistic Eu-

3-kiloparsec arm to explosions in the galactic nucleus, Astrophys. J.
ler equations into a discrete set of beam conservation laws. 188, 489 (1974).
Formulations for two space dimensions are also included. 14. V. Schneider, U. Katscher, D. H. Rischke, B. Waldhauser, J. A.
A class of high-order relativistic beam schemes, including Maruhn, and C.-D. Munz, New algorithms for ultra-relativistic numer-

ical hydrodynamics, J. Comput. Phys. 105, 92 (1993).the total variation diminishing and essentially nonoscilla-
15. C.-W. Shu and S. Osher, Efficient implementation of essentially non-tory methods, have also been devised. Numerical experi-

oscillatory shock-capturing schemes, II, J. Comput. Phys. 83, 32ments with this class of high-order beam schemes for solv-
(1989).ing relativistic one-dimensional shock tube flows and two-

16. J. L. Synge, The Relativistic Gas (North-Holland, Amsterdam, 1957).dimensional Kelvin–Helmholtz instability flows have been
17. A. H. Taub, Relativistic Rankine–Hugoniot equations, Phys. Rev.

carried out and the high resolution of flow fields in all 74, 328 (1948).
aspects have been demonstrated. The present relativistic 18. A. H. Taub, Relativistic fluid mechanics, Annu. Rev. Fluid Mech. 10,
beam scheme starts with a microscopic kinetic-theoretical 301 (1978).
description of particle motion and ends up with possessing 19. P. Woodward and P. Collela, The numerical simulation of two-dimen-

sional fluid flow with strong shock, J. Comput. Phys. 51, 115 (1984).the wave propagation property of macroscopic continuum
20. K. Xu and K. H. Prendergast, J. Comput. Phys. 114, 9 (1994).description. Its particle–wave dual nature provides a new
21. K. Xu, L. Martinelli, and A. Jameson, J. Comput. Phys. 120, 48 (1995).and interesting approach for treating relativistic gas dy-
22. J. Y. Yang and C. A. Hsu, High-resolution, non-oscillatory schemesnamics.

for unsteady compressible flows, AIAA J. 30, 658 (1992).
23. J. Y. Yang, J. C. Huang, and L. Tsuei, Numerical solutions of the

nonlinear model Boltzmann equations, Proc. Roy. Soc. Lond. A 448,ACKNOWLEDGMENT
55 (1995).

24. J. Y. Yang and J. C. Huang, Rarefied flow computations using nonlin-This work was sponsored by the National Science Council of the Repub-
lic of China under Grant NSC 86-2612-E-002-010. ear model Boltzmann equations, J. Comput. Phys. 120, 323 (1995).


